Linear Algebra I

Semestral Examination

Instructions: All questions carry ten marks. Vector spaces are assumed to be finite dimensional.

1. Let $\mathcal{B}=((1,2,3),(1,0,0),(4,5,6))$ denote a basis of \mathbb{R}^{3}. Compute the coordinates of the three standard basis vectors e_{1}, e_{2}, e_{3} with respect to \mathcal{B}.
2. Let A, B be real matrices such that the system of equations $A X=B$ has a solution in complex numbers. Then show that it also has a solution in the real numbers (i.e. all coordinates of a solution are real numbers)
3. Let L be a linearly independent subset of a vector space V over a field F. Let S be another subset of V such that $\operatorname{Span}(S)=\operatorname{Span}(L)$. Then prove that S contains at least as many elements as L.
4. State and prove the dimension formula for a linear transformation between two vector spaces.
5. Let V be a finite dimensional vector space over the field of real numbers. A linear operator $T: V \rightarrow V$ is called a projection if $T \circ T=T$. Let K and W be the kernel and image of T. Prove that $V=W+K$ and $W \cap K=\{0\}$.
